Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Intervalo de año de publicación
1.
Clin Oral Investig ; 28(4): 238, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38568249

RESUMEN

OBJECTIVES: This narrative review addresses relevant points about Chapare virus (CHAV) entry in oral cells, CHAV transmission, and preventive strategies in dental clinical settings. It is critical in dentistry due to the frequent presence of gingival hemorrhage occurred in CHAV-infected patients. MATERIALS AND METHODS: Studies related to CHAV were searched in MEDLINE/PubMed, Scopus, EMBASE, and Web-of-Science databases without language restriction or year of publication. RESULTS: Recently, the PAHO/WHO and CDC indicate a presence of human-to-human transmission of CHAV associated with direct contact with saliva, blood, or urine, and also through droplets or aerosols created in healthcare procedures. CHAV was detected in human oropharyngeal saliva and gingival bleeding was confirmed in all cases of CHAV hemorrhagic fever, including evidence of nosocomial CHAV transmission in healthcare workers. We revisited the human transferrin receptor 1 (TfR1) expression in oral, nasal, and salivary glands tissues, as well as, we firstly identified the critical residues in the pre-glycoprotein (GP) complex of CHAV that interacts with human TfR1 using cutting-edge in silico bioinformatics platforms associated with molecular dynamic analysis. CONCLUSIONS: In this multidisciplinary view, we also point out critical elements to provide perspectives on the preventive strategies for dentists and frontline healthcare workers against CHAV, and in the implementation of salivary diagnostic platforms for virus detection, which can be critical to an urgent plan to prevent human-to-human transmission based on current evidence. CLINICAL RELEVANCE: The preventive strategies in dental clinical settings are pivotal due to the aerosol-generating procedures in dentistry with infected patients or suspected cases of CHAV infection.


Asunto(s)
Biología Computacional , Fiebre Hemorrágica Americana , Humanos , Personal de Salud , Odontología
2.
Front Plant Sci ; 15: 1337750, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38348273

RESUMEN

In plants, serpins are a superfamily of serine and cysteine protease inhibitors involved in stress and defense mechanisms, with potential for controlling agricultural pests, making them important biotechnological tools. The objective of this study was to characterize a serpin from Theobroma cacao, called TcSERPIN, to identify its endogenous targets and determine its function and biotechnological potential. TcSERPIN has 390 amino acid residues and shows conservation of the main active site, RCL. Cis-elements related to light, stress, hormones, anaerobic induction, cell cycle regulation and defense have been identified in the gene's regulatory region. TcSERPIN transcripts are accumulated in different tissues of Theobroma cacao. Furthermore, in plants infected with Moniliophtora perniciosa and Phytophthora palmivora, the expression of TcSERPIN was positively regulated. The protein spectrum, rTcSERPIN, reveals a typical ß-sheet pattern and is thermostable at pH 8, but loses its structure with temperature increases above 66°C at pH 7. At the molar ratios of 0.65 and 0.49, rTcSERPIN inhibited 55 and 28% of the activity of papain from Carica papaya and trypsin from Sus scrofa, respectively. The protease trap containing immobilized rTcSERPIN captured endogenous defense proteins from cocoa extracts that are related to metabolic pathways, stress and defense. The evaluation of the biotechnological potential against geohelminth larvae showed that rTcSERPIN and rTcCYS4 (Theobroma cacao cystatin 4) reduced the movement of larvae after 24 hours. The results of this work show that TcSERPIN has ideal biochemical characteristics for biotechnological applications, as well as potential for studies of resistance to phytopathogens of agricultural crops.

3.
Comput Biol Med ; 170: 107899, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38232455

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the rapidly evolving RNA virus behind the COVID-19 pandemic, has spawned numerous variants since its 2019 emergence. The multifunctional Nonstructural protein 14 (NSP14) enzyme, possessing exonuclease and messenger RNA (mRNA) capping capabilities, serves as a key player. Notably, single and co-occurring mutations within NSP14 significantly influence replication fidelity and drive variant diversification. This study comprehensively examines 120 co-mutations, 68 unique mutations, and 160 conserved residues across NSP14 homologs, shedding light on their implications for phylogenetic patterns, pathogenicity, and residue interactions. Quantitative physicochemical analysis categorizes 3953 NSP14 variants into three clusters, revealing genetic diversity. This research underscoresthe dynamic nature of SARS-CoV-2 evolution, primarily governed by NSP14 mutations. Understanding these genetic dynamics provides valuable insights for therapeutic and vaccine development.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Pandemias , Filogenia , COVID-19/genética , Replicación Viral/genética , Exorribonucleasas/química , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , Mutación/genética
4.
J Biomol Struct Dyn ; : 1-15, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38239063

RESUMEN

Equine strangles is a prevalent disease that affects the upper respiratory in horses and is caused by the Gram-positive bacterium Streptococcus equi. In addition to strangles, other clinical conditions are caused by the two S. equi subspecies, equi and zooepidemicus, which present relevant zoonotic potential. Treatment of infections caused by S. equi has become challenging due to the worldwide spreading of infected horses and the unavailability of effective therapeutics and vaccines. Penicillin treatment is often recommended, but multidrug resistance issues arised. We explored the whole genome sequence of 18 S. equi isolates to identify candidate proteins to be targeted by natural drug-like compounds or explored as immunogens. We considered only proteins shared among the sequenced strains of subspecies equi and zooepidemicus, absent in the equine host and predicted to be essential and involved in virulence. Of these, 4 proteins with cytoplasmic subcellular location were selected for molecular docking with a library of 5008 compounds, while 6 proteins were proposed as prominent immunogens against S. equi due to their probabilities of behaving as adhesins. The molecular docking analyses revealed the best ten ligands for each of the 4 drug target candidates, and they were ranked according to their binding affinities and the number of hydrogen bonds for complex stability. Finally, the natural 5-ring compound C25H20F3N5O3 excelled in molecular dynamics simulations for the increased stability in the interaction with UDP-N-acetylenolpyruvoylglucosamine reductase (MurB). This research paves the way to developing new therapeutics to minimize the impacts caused by S. equi infections.Communicated by Ramaswamy H. Sarma.

5.
Viruses ; 15(9)2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37766292

RESUMEN

The SARS-CoV-2 entry into host cells is mainly mediated by the interactions between the viral spike protein (S) and the ACE-2 cell receptor, which are highly glycosylated. Therefore, carbohydrate binding agents may represent potential candidates to abrogate virus infection. Here, we evaluated the in vitro anti-SARS-CoV-2 activity of two mannose-binding lectins isolated from the Brazilian plants Canavalia brasiliensis and Dioclea violacea (ConBR and DVL). These lectins inhibited SARS-CoV-2 Wuhan-Hu-1 strain and variants Gamma and Omicron infections, with selectivity indexes (SI) of 7, 1.7, and 6.5, respectively for ConBR; and 25, 16.8, and 22.3, for DVL. ConBR and DVL inhibited over 95% of the early stages of the viral infection, with strong virucidal effect, and also protected cells from infection and presented post-entry inhibition. The presence of mannose resulted in the complete lack of anti-SARS-CoV-2 activity by ConBR and DVL, recovering virus titers. ATR-FTIR, molecular docking, and dynamic simulation between SARS-CoV-2 S and either lectins indicated molecular interactions with predicted binding energies of -85.4 and -72.0 Kcal/Mol, respectively. Our findings show that ConBR and DVL lectins possess strong activities against SARS-CoV-2, potentially by interacting with glycans and blocking virus entry into cells, representing potential candidates for the development of novel antiviral drugs.


Asunto(s)
Antivirales , COVID-19 , Humanos , Antivirales/farmacología , Lectinas de Unión a Manosa , SARS-CoV-2 , Simulación del Acoplamiento Molecular , Lectinas/farmacología
6.
Int J Mol Sci ; 24(18)2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37762664

RESUMEN

In this narrative review, we aim to point out the close relationship between mpox virus (MPXV) infection and the role of saliva as a diagnostic tool for mpox, considering the current molecular approach and in the perspective of OMICs application. The MPXV uses the host cell's rough endoplasmic reticulum, ribosomes, and cytoplasmic proteins to replicate its genome and synthesize virions for cellular exit. The presence of oral mucosa lesions associated with mpox infection is one of the first signs of infection; however, current diagnostic tools find it difficult to detect the virus before the rashes begin. MPXV transmission occurs through direct contact with an infected lesion and infected body fluids, including saliva, presenting a potential use of this fluid for diagnostic purposes. Currently available diagnostic tests for MPXV detection are performed either by real-time quantitative PCR (RT-qPCR) or ELISA, which presents several limitations since they are invasive tests. Despite current clinical trials with restricted sample size, MPXV DNA was detected in saliva with a sensitivity of 85%-100%. In this context, the application of transcriptomics, metabolomics, lipidomics, or proteomics analyses coupled with saliva can identify novel disease biomarkers. Thus, it is important to note that the identification and quantification of salivary DNA, RNA, lipid, protein, and metabolite can provide novel non-invasive biomarkers through the use of OMICs platforms aiding in the early detection and diagnosis of MPXV infection. Untargeted mass spectrometry (MS)-based proteomics reveals that some proteins also expressed in saliva were detected with greater expression differences in blood plasma when comparing mpox patients and healthy subjects, suggesting a promising alternative to be applied in screening or diagnostic platforms for mpox salivary diagnostics coupled to OMICs.


Asunto(s)
Líquidos Corporales , Enfermedades Transmisibles , Humanos , Patología Bucal , Saliva
7.
Vaccines (Basel) ; 11(4)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37112638

RESUMEN

Rotavirus A is the most common cause of Acute Gastroenteritis globally among children <5 years of age. Due to a segmented genome, there is a high frequency of genetic reassortment and interspecies transmission which has resulted in the emergence of novel genotypes. There are concerns that monovalent (Rotarix: GlaxoSmithKline Biologicals, Rixensart, Belgium) and pentavalent (RotaTeq: MERCK & Co., Inc., Kenilworth, NJ, USA) vaccines may be less effective against non-vaccine strains, which clearly shows the demand for the design of a vaccine that is equally effective against all circulating genotypes. In the present study, a multivalent vaccine was designed from VP4 and VP7 proteins of RVA. Epitopes were screened for antigenicity, allergenicity, homology with humans and anti-inflammatory properties. The vaccine contains four B-cell, three CTL and three HTL epitopes joined via linkers and an N-terminal RGD motif adjuvant. The 3D structure was predicted and refined preceding its docking with integrin. Immune simulation displayed promising results both in Asia and worldwide. In the MD simulation, the RMSD value varied from 0.2 to 1.6 nm while the minimum integrin amino acid fluctuation (0.05-0.1 nm) was observed with its respective ligand. Codon optimization was performed with an adenovirus vector in a mammalian expression system. The population coverage analysis showed 99.0% and 98.47% in South Asia and worldwide, respectively. These computational findings show potential against all RVA genotypes; however, in-vitro/in-vivo screening is essential to devise a meticulous conclusion.

8.
J Fungi (Basel) ; 9(1)2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36675931

RESUMEN

Ophiocordyceps australis (Ascomycota, Hypocreales, Ophiocordycipitaceae) is a classic entomopathogenic fungus that parasitizes ants (Hymenoptera, Ponerinae, Ponerini). Nonetheless, according to our results, this fungal species also exhibits a complete set of genes coding for plant cell wall degrading Carbohydrate-Active enZymes (CAZymes), enabling a full endophytic stage and, consequently, its dual ability to both parasitize insects and live inside plant tissue. The main objective of our study was the sequencing and full characterization of the genome of the fungal strain of O. australis (CCMB661) and its predicted secretome. The assembled genome had a total length of 30.31 Mb, N50 of 92.624 bp, GC content of 46.36%, and 8,043 protein-coding genes, 175 of which encoded CAZymes. In addition, the primary genes encoding proteins and critical enzymes during the infection process and those responsible for the host-pathogen interaction have been identified, including proteases (Pr1, Pr4), aminopeptidases, chitinases (Cht2), adhesins, lectins, lipases, and behavioral manipulators, such as enterotoxins, Protein Tyrosine Phosphatases (PTPs), and Glycoside Hydrolases (GHs). Our findings indicate that the presence of genes coding for Mad2 and GHs in O. australis may facilitate the infection process in plants, suggesting interkingdom colonization. Furthermore, our study elucidated the pathogenicity mechanisms for this Ophiocordyceps species, which still is scarcely studied.

9.
Inflammation ; 46(1): 297-312, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36215001

RESUMEN

Hyper-transmissibility with decreased disease severity is a typical characteristic of the SARS-CoV-2 Omicron variant. To understand this phenomenon, we used various bioinformatics approaches to analyze randomly selected genome sequences (one each) of the Gamma, Delta, and Omicron variants submitted to NCBI from December 15 to 31, 2021. We report that the pathogenicity of SARS-CoV-2 variants decreases in the order of Wuhan > Gamma > Delta > Omicron; however, the antigenic property follows the order of Omicron > Gamma > Wuhan > Delta. The Omicron spike RBD shows lower pathogenicity but higher antigenicity than other variants. The reported decreased disease severity by the Omicron variant may be due to its decreased pro-inflammatory and IL-6 stimulation and increased IFN-γ and IL-4 induction efficacy. The mutations in the N protein are probably associated with this decreased IL-6 induction and human DDX21-mediated increased IL-4 production for Omicron. Due to the mutations, the stability of S, M, N, and E proteins decreases in the order of Omicron > Gamma > Delta > Wuhan. Although a stronger spike RBD-hACE2 binding of Omicron increases its transmissibility, the lowest stability of its spike protein makes spike RBD-hACE2 interaction weak for systemic infection and for causing severe disease. Finally, the highest instability of the Omicron E protein may also be associated with decreased viral maturation and low viral load, leading to less severe disease and faster recovery. Our findings will contribute to the understanding of the dynamics of SARS-CoV-2 variants and the management of emerging variants. This minimal genome-based method may be used for other similar viruses avoiding robust analysis.


Asunto(s)
COVID-19 , Citocinas , Humanos , SARS-CoV-2/genética , Interleucina-4 , Interleucina-6 , Virulencia , Factores de Transcripción , Antiinflamatorios , ARN Helicasas DEAD-box
10.
Environ Microbiol ; 24(10): 4714-4724, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35859337

RESUMEN

We investigated whether a set of phylogeographical tracked emergent events of Orthocoronavirinae were related to developed, urban and polluted environments worldwide. We explored coronavirus records in response to climate (rainfall parameters), population density, CO2 emission, Human Developmental Index (HDI) and deforestation. We contrasted environmental characteristics from regions with spillovers or encounters of wild Orthocoronavirinae against adjacent areas having best-preserved conditions. We used all complete sequenced CoVs genomes deposited in NCBI and GISAID databases until January 2021. Except for Deltacoronavirus, concentrated in Hong Kong and in birds, the other three genera were scattered all over the planet, beyond the original distribution of the subfamily, and found in humans, mammals, fishes and birds, wild or domestic. Spillovers and presence in wild animals were only reported in developed/densely populated places. We found significantly more occurrences reported in places with higher HDI, CO2 emission, or population density, along with more rainfall and more accentuated seasonality. Orthocoronavirinae occurred in areas with significantly higher human populations, CO2 emissions and deforestation rates than in adjacent locations. Intermediately disturbed ecosystems seemed more vulnerable for Orthocoronavirinae emergence than forested regions in frontiers of deforestation. Sadly, people experiencing poverty in an intensely consumerist society are the most vulnerable.


Asunto(s)
Infecciones por Coronavirus , Coronavirus , Animales , Dióxido de Carbono , Conservación de los Recursos Naturales , Ecosistema , Humanos , Mamíferos
11.
Front Microbiol ; 13: 782175, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35369445

RESUMEN

Komagataeibacter is the dominant taxon and cellulose-producing bacteria in the Kombucha Microbial Community (KMC). This is the first study to isolate the K. oboediens genome from a reactivated space-exposed KMC sample and comprehensively characterize it. The space-exposed genome was compared with the Earth-based reference genome to understand the genome stability of K. oboediens under extraterrestrial conditions during a long time. Our results suggest that the genomes of K. oboediens IMBG180 (ground sample) and K. oboediens IMBG185 (space-exposed) are remarkably similar in topology, genomic islands, transposases, prion-like proteins, and number of plasmids and CRISPR-Cas cassettes. Nonetheless, there was a difference in the length of plasmids and the location of cas genes. A small difference was observed in the number of protein coding genes. Despite these differences, they do not affect any genetic metabolic profile of the cellulose synthesis, nitrogen-fixation, hopanoid lipids biosynthesis, and stress-related pathways. Minor changes are only observed in central carbohydrate and energy metabolism pathways gene numbers or sequence completeness. Altogether, these findings suggest that K. oboediens maintains its genome stability and functionality in KMC exposed to the space environment most probably due to the protective role of the KMC biofilm. Furthermore, due to its unaffected metabolic pathways, this bacterial species may also retain some promising potential for space applications.

12.
PeerJ ; 10: e13136, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35341060

RESUMEN

Open reading frame 8 (ORF8) shows one of the highest levels of variability among accessory proteins in Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the causative agent of Coronavirus Disease 2019 (COVID-19). It was previously reported that the ORF8 protein inhibits the presentation of viral antigens by the major histocompatibility complex class I (MHC-I), which interacts with host factors involved in pulmonary inflammation. The ORF8 protein assists SARS-CoV-2 in evading immunity and plays a role in SARS-CoV-2 replication. Among many contributing mutations, Q27STOP, a mutation in the ORF8 protein, defines the B.1.1.7 lineage of SARS-CoV-2, engendering the second wave of COVID-19. In the present study, 47 unique truncated ORF8 proteins (T-ORF8) with the Q27STOP mutations were identified among 49,055 available B.1.1.7 SARS-CoV-2 sequences. The results show that only one of the 47 T-ORF8 variants spread to over 57 geo-locations in North America, and other continents, which include Africa, Asia, Europe and South America. Based on various quantitative features, such as amino acid homology, polar/non-polar sequence homology, Shannon entropy conservation, and other physicochemical properties of all specific 47 T-ORF8 protein variants, nine possible T-ORF8 unique variants were defined. The question as to whether T-ORF8 variants function similarly to the wild type ORF8 is yet to be investigated. A positive response to the question could exacerbate future COVID-19 waves, necessitating severe containment measures.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiología , Sistemas de Lectura Abierta/genética , Antígenos Virales/genética
13.
J Ethnopharmacol ; 289: 115089, 2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35143935

RESUMEN

ETHNOPHARMACOLOGY RELEVANCE: Schinopsis brasiliensis Engl. is an endemic tree of the Brazilian semi-arid regions belonging to the Anacardiaceae family. It is the main representative of the genus Schinopsis, mostly native to Brazil and popularly known as "braúna" or "baraúna". Different parts of this plant are employed in Brazilian folk medicines to treat inflammation in general, sexual impotence, cough, and influenza. AIM OF THE STUDY: This work describes the antinociceptive (acetic acid-induced writhing and formalin-induced nociception) and anti-inflammatory (paw edema and neutrophil migration) activities of the extract of the root of S. brasiliensis. Besides, the evaluation of total phenolic compounds and antioxidant, antimicrobial (including MRSA bacteria), and acetylcholinesterase inhibition activities were also determined. MATERIAL AND METHODS: The pure compounds were isolated by different chromatographic techniques and their chemical structures have been unambiguously elucidated based on extensive spectroscopic methods, including 1D (1H, 13C, DEPT, and NOEdiff) and 2D (HSQC, HMBC, and NOESY) NMR experiments, MS data, and comparison with the literature data of similar compounds. The antinociceptive and anti-inflammatory activities were evaluated by acid acetic writhing test, formalin paw edema, and by the investigation of neutrophil migration to the peritoneal cavities of mice. For antimicrobial evaluation were determined MIC and MBC, antioxidant activities were obtained by TPC and DPPH tests, and AChE inhibition by Elmann's methodology. RESULTS: The extracts showed antinociceptive and anti-inflammatory activities and two unusual new compounds, a cyclobutanyl chalcone trimer (schinopsone A) and a cyclohexene-containing chalcone dimer (schinopsone B), with six known compounds were isolated from the active extracts. Additionally, the acetylcholinesterase inhibitory activity for isolated compounds was reported for the first time in this study. Molecular docking studies indicated that the isolated compounds are responsible for the interaction with anti-inflammatory targets (COX 1 and 2 and LOX) with variable binding affinities, indicating a possible mechanism of action of these compounds. CONCLUSIONS: These findings indicate for the first time the correlation between the anti-inflammatory activity different enriched polyphenol-organic soluble fractions of S. brasiliensis, and it contributes to the understanding of the anti-inflammatory potential of S. brasiliensis.


Asunto(s)
Anacardiaceae/química , Antiinflamatorios/farmacología , Chalconas/farmacología , Extractos Vegetales/farmacología , Analgésicos/aislamiento & purificación , Analgésicos/farmacología , Animales , Antiinflamatorios/aislamiento & purificación , Antioxidantes/aislamiento & purificación , Antioxidantes/farmacología , Brasil , Chalconas/química , Chalconas/aislamiento & purificación , Modelos Animales de Enfermedad , Inflamación/tratamiento farmacológico , Masculino , Ratones , Ratones Endogámicos BALB C , Simulación del Acoplamiento Molecular , Extractos Vegetales/química
14.
Arch Biochem Biophys ; 717: 109124, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35085577

RESUMEN

The coronavirus disease 2019 (COVID-19) is caused by the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS- CoV-2) with an estimated fatality rate of less than 1%. The SARS-CoV-2 accessory proteins ORF3a, ORF6, ORF7a, ORF7b, ORF8, and ORF10 possess putative functions to manipulate host immune mechanisms. These involve interferons, which appear as a consensus function, immune signaling receptor NLRP3 (NLR family pyrin domain-containing 3) inflammasome, and inflammatory cytokines such as interleukin 1ß (IL-1ß) and are critical in COVID-19 pathology. Outspread variations of each of the six accessory proteins were observed across six continents of all complete SARS-CoV-2 proteomes based on the data reported before November 2020. A decreasing order of percentage of unique variations in the accessory proteins was determined as ORF3a > ORF8 > ORF7a > ORF6 > ORF10 > ORF7b across all continents. The highest and lowest unique variations of ORF3a were observed in South America and Oceania, respectively. These findings suggest that the wide variations in accessory proteins seem to affect the pathogenicity of SARS-CoV-2.


Asunto(s)
COVID-19/virología , SARS-CoV-2/genética , Proteínas Virales/genética , Proteínas Viroporinas/genética , COVID-19/patología , Variación Genética , Humanos , Filogenia , SARS-CoV-2/patogenicidad
15.
J Biomol Struct Dyn ; 40(20): 10106-10121, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34192477

RESUMEN

The Gram-negative bacillus Serratia marcescens, a member of Enterobacteriaceae family, is an opportunistic nosocomial pathogen commonly found in hospital outbreaks that can cause infections in the urinary tract, bloodstream, central nervous system and pneumonia. Because S. marcescens strains are resistant to several antibiotics, it is critical the need for effective treatments, including new drugs and vaccines. Here, we applied reverse vaccinology and subtractive genomic approaches for the in silico prediction of potential vaccine and drug targets against 59 strains of S. marcescens. We found 759 core non-host homologous proteins, of which 87 are putative surface-exposed proteins, 183 secreted proteins, and 80 membrane proteins. From these proteins, we predicted seven candidates vaccine targets: a sn-glycerol-3-phosphate-binding periplasmic protein UgpB, a vitamin B12 TonB-dependent receptor, a ferrichrome porin FhuA, a divisome-associated lipoprotein YraP, a membrane-bound lytic murein transglycosylase A, a peptidoglycan lytic exotransglycosylase, and a DUF481 domain-containing protein. We also predicted two drug targets: a N(4)-acetylcytidine amidohydrolase, and a DUF1428 family protein. Using the molecular docking approach for each drug target, we identified and selected ZINC04259491 and ZINC04235390 molecules as the most favorable interactions with the target active site residues. Our findings may contribute to the development of vaccines and new drug targets against S. marcescens. Communicated by Ramaswamy H. Sarma.


Asunto(s)
Serratia marcescens , Vacunas , Serratia marcescens/genética , Vacunología , Simulación del Acoplamiento Molecular , Genómica
16.
Int J Biol Macromol ; 191: 934-955, 2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34571123

RESUMEN

The spike (S) protein is a critical determinant of the infectivity and antigenicity of SARS-CoV-2. Several mutations in the S protein of SARS-CoV-2 have already been detected, and their effect in immune system evasion and enhanced transmission as a cause of increased morbidity and mortality are being investigated. From pathogenic and epidemiological perspectives, S proteins are of prime interest to researchers. This study focused on the unique variants of S proteins from six continents: Asia, Africa, Europe, Oceania, South America, and North America. In comparison to the other five continents, Africa had the highest percentage of unique S proteins (29.1%). The phylogenetic relationship implies that unique S proteins from North America are significantly different from those of the other five continents. They are most likely to spread to the other geographic locations through international travel or naturally by emerging mutations. It is suggested that restriction of international travel should be considered, and massive vaccination as an utmost measure to combat the spread of the COVID-19 pandemic. It is also further suggested that the efficacy of existing vaccines and future vaccine development must be reviewed with careful scrutiny, and if needed, further re-engineered based on requirements dictated by new emerging S protein variants.


Asunto(s)
COVID-19/epidemiología , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Sustitución de Aminoácidos/inmunología , COVID-19/inmunología , Entropía , Humanos , Punto Isoeléctrico , Mutación/inmunología , Pandemias/estadística & datos numéricos , Filogenia , Glicoproteína de la Espiga del Coronavirus/inmunología
17.
Front Immunol ; 12: 663912, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34305894

RESUMEN

The Spike (S) protein of the SARS-CoV-2 virus is critical for its ability to attach and fuse into the host cells, leading to infection, and transmission. In this review, we have initially performed a meta-analysis of keywords associated with the S protein to frame the outline of important research findings and directions related to it. Based on this outline, we have reviewed the structure, uniqueness, and origin of the S protein of SARS-CoV-2. Furthermore, the interactions of the Spike protein with host and its implications in COVID-19 pathogenesis, as well as drug and vaccine development, are discussed. We have also summarized the recent advances in detection methods using S protein-based RT-PCR, ELISA, point-of-care lateral flow immunoassay, and graphene-based field-effect transistor (FET) biosensors. Finally, we have also discussed the emerging Spike mutants and the efficacy of the Spike-based vaccines against those strains. Overall, we have covered most of the recent advances on the SARS-CoV-2 Spike protein and its possible implications in countering this virus.


Asunto(s)
SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , COVID-19/diagnóstico , COVID-19/prevención & control , COVID-19/virología , Prueba de COVID-19 , Vacunas contra la COVID-19/inmunología , Interacciones Huésped-Patógeno , Humanos , Mutación , SARS-CoV-2/genética , SARS-CoV-2/inmunología , SARS-CoV-2/aislamiento & purificación , Especificidad de la Especie , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Tratamiento Farmacológico de COVID-19
18.
Mol Omics ; 17(2): 317-337, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33683246

RESUMEN

Comprehensive clinical pictures, comorbid conditions, and long-term complications of COVID-19 are still unknown. Recently, using a multi-omics-based strategy, we predicted potential drugs for COVID-19 with ∼70% accuracy. Herein, using a novel multi-omics-based bioinformatic approach and three ways of analysis, we identified the symptoms, comorbid conditions, and short-, mid-, and possible long-term complications of COVID-19 with >90% precision including 27 parent, 170 child, and 403 specific conditions. Among the specific conditions, 36 viral, 53 short-term, 62 short-mid-long-term, 194 mid-long-term, and 57 congenital conditions are identified. At a threshold "count of occurrence" of 4, we found that 83-100% (average 92.67%) of enriched conditions are associated with COVID-19. Except for dry cough and loss of taste, all the other COVID-19-associated mild and severe symptoms are enriched. CVDs, and pulmonary, metabolic, musculoskeletal, neuropsychiatric, kidney, liver, and immune system disorders are top comorbid conditions. Specific diseases like myocardial infarction, hypertension, COPD, lung injury, diabetes, cirrhosis, mood disorders, dementia, macular degeneration, chronic kidney disease, lupus, arthritis, etc. along with several other NCDs were found to be top candidates. Interestingly, many cancers and congenital disorders associated with COVID-19 severity are also identified. Arthritis, gliomas, diabetes, psychiatric disorders, and CVDs having a bidirectional relationship with COVID-19 are also identified as top conditions. Based on our accuracy (>90%), the long-term presence of SARS-CoV-2 RNA in human, and our "genetic remittance" assumption, we hypothesize that all the identified top-ranked conditions could be potential long-term consequences in COVID-19 survivors, warranting long-term observational studies.


Asunto(s)
COVID-19/complicaciones , COVID-19/fisiopatología , Genómica/métodos , COVID-19/genética , COVID-19/metabolismo , Comorbilidad , Humanos , Índice de Severidad de la Enfermedad , Síndrome Post Agudo de COVID-19
19.
Front Pharmacol ; 11: 590598, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33390967

RESUMEN

The SARS-CoV-2 outbreak originally appeared in China in December 2019 and became a global pandemic in March 2020. This infectious disease has directly affected public health and the world economy. Several palliative therapeutic treatments and prophylaxis strategies have been used to control the progress of this viral infection, including pre-(PrEP) and post-exposure prophylaxis. On the other hand, research groups around the world are still studying novel drug prophylaxis and treatment using repurposing approaches, as well as vaccination options, which are in different pre-clinical and clinical testing phases. This systematic review evaluated 1,228 articles from the PubMed and Scopus indexing databases, following the Kitchenham bibliographic searching protocol, with the aim to list drug candidates, potentially approved to be used as new options for SARS-CoV-2 prophylaxis clinical trials and medical protocols. In searching protocol, we used the following keywords: "Covid-19 or SARS-CoV-2" or "Coronavirus or 2019 nCoV," "prophylaxis," "prophylactic," "pre-exposure," "COVID-19 or SARS-CoV-2 Chemoprophylaxis," "repurposed," "strategies," "clinical," "trials," "anti-SARS-CoV-2," "anti-covid-19," "Antiviral," "Therapy prevention in vitro," in cells "and" human testing. After all protocol steps, we selected 60 articles that included: 15 studies with clinical data, 22 studies that used in vitro experiments, seven studies using animal models, and 18 studies performed with in silico experiments. Additionally, we included more 22 compounds between FDA approved drugs and drug-like like molecules, which were tested in large-scale screenings, as well as those repurposed approved drugs with new mechanism of actions. The drugs selected in this review can assist clinical studies and medical guidelines on the rational repurposing of known antiviral drugs for COVID-19 prophylaxis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...